skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pooladian, Aram-Alexandre"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Entropic Brenier maps are regularized analogues of Brenier maps (optimal transport maps) which converge to Brenier maps as the regularization parameter shrinks. In this work, we prove quantitative stability bounds between entropic Brenier maps under variations of the target measure. In particular, when all measures have bounded support, we establish the optimal Lipschitz constant for the mapping from probability measures to entropic Brenier maps. This provides an exponential improvement to a result of Carlier, Chizat, and Laborde (2024). As an application, we prove near-optimal bounds for the stability of semi-discrete unregularized Brenier maps for a family of discrete target measures. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Free, publicly-accessible full text available June 1, 2026
  3. Free, publicly-accessible full text available November 11, 2025
  4. We develop a theory of finite-dimensional polyhedral subsets over the Wasserstein space and optimization of functionals over them via first-order methods. Our main application is to the problem of mean-field variational inference, which seeks to approximate a distribution π over ℝd by a product measure π⋆. When π is strongly log-concave and log-smooth, we provide (1) approximation rates certifying that π⋆ is close to the minimizer π⋆⋄ of the KL divergence over a \emph{polyhedral} set ⋄, and (2) an algorithm for minimizing KL(⋅‖π) over ⋄ with accelerated complexity O(κ√log(κd/ε2)), where κ is the condition number of π. 
    more » « less
  5. Krause, Andreas; Brunskill, Emma; Cho, Kyunghyun; Engelhardt, Barbara; Sabato, Sivan; Scarlett, Jonathan (Ed.)
    We consider the problem of estimating the optimal transport map between two probability distributions, P and Q in R^d, on the basis of i.i.d. samples. All existing statistical analyses of this problem require the assumption that the transport map is Lipschitz, a strong requirement that, in particular, excludes any examples where the transport map is discontinuous. As a first step towards developing estimation procedures for discontinuous maps, we consider the important special case where the data distribution Q is a discrete measure supported on a finite number of points in R^d. We study a computationally efficient estimator initially proposed by Pooladian & Niles-Weed (2021), based on entropic optimal transport, and show in the semi-discrete setting that it converges at the minimax-optimal rate n^{−1/2}, independent of dimension. Other standard map estimation techniques both lack finite-sample guarantees in this setting and provably suffer from the curse of dimensionality. We confirm these results in numerical experiments, and provide experiments for other settings, not covered by our theory, which indicate that the entropic estimator is a promising methodology for other discontinuous transport map estimation problems. 
    more » « less
  6. We consider the problem of estimating the optimal transport map between two probability distributions, P and Q in Rd, on the basis of i.i.d. samples. All existing statistical analyses of this problem require the assumption that the transport map is Lipschitz, a strong requirement that, in particular, excludes any examples where the transport map is discontinuous. As a first step towards developing estimation procedures for discontinuous maps, we consider the important special case where the data distribution Q is a discrete measure supported on a finite number of points in Rd. We study a computationally efficient estimator initially proposed by Pooladian and Niles-Weed (2021), based on entropic optimal transport, and show in the semi-discrete setting that it converges at the minimax-optimal rate n−1/2, independent of dimension. Other standard map estimation techniques both lack finite-sample guarantees in this setting and provably suffer from the curse of dimensionality. We confirm these results in numerical experiments, and provide experiments for other settings, not covered by our theory, which indicate that the entropic estimator is a promising methodology for other discontinuous transport map estimation problems. 
    more » « less
  7. Simulation-free methods for training continuous-time generative models construct probability paths that go between noise distributions and individual data samples. Recent works, such as Flow Matching, derived paths that are optimal for each data sample. However, these algorithms rely on independent data and noise samples, and do not exploit underlying structure in the data distribution for constructing probability paths. We propose Multisample Flow Matching, a more general framework that uses non-trivial couplings between data and noise samples while satisfying the correct marginal constraints. At very small overhead costs, this generalization allows us to (i) reduce gradient variance during training, (ii) obtain straighter flows for the learned vector field, which allows us to generate high-quality samples using fewer function evaluations, and (iii) obtain transport maps with lower cost in high dimensions, which has applications beyond generative modeling. Importantly, we do so in a completely simulation-free manner with a simple minimization objective. We show that our proposed methods improve sample consistency on downsampled ImageNet data sets, and lead to better low-cost sample generation. 
    more » « less